The Carathéodory-Cartan-Kaup-Wu theorem on an infinite-dimensional Hilbert space

نویسندگان

  • Joseph A. Cima
  • Ian Graham
  • Kang-Tae Kim
  • Steven G. Krantz
چکیده

This paper treats a holomorphic self-mapping f : Ω → Ω of a bounded domain Ω in a separable Hilbert space H with a fixed point p. In case the domain is convex, we prove an infinitedimensional version of the Cartan-Carathéodory-Kaup-Wu Theorem. This is basically a rigidity result in the vein of the uniqueness part of the classical Schwarz lemma. The main technique, inspired by an old idea of H. Cartan, is iteration of the mapping f and its derivative. A normality result for holomorphic mappings in the compact-weak-open topology, due to Kim and Krantz, is used. AMS Subject Classification: Primary 32H02, 46G20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits

In the finite-dimensional setting, every Hermitian-symmetric space of compact type is a coadjoint orbit of a finite-dimensional Lie group. It is natural to ask whether every infinite-dimensional Hermitiansymmetric space of compact type, which is a particular example of an Hilbert manifold, is transitively acted upon by a Hilbert Lie group of isometries. In this paper we give the classification ...

متن کامل

Group-Valued Measures on the Lattice of Closed Subspaces of a Hilbert Space

We show there are no non-trivial finite Abelian group-valued measures on the lattice of closed subspaces of an infinite-dimensional Hilbert space, and we use this to establish that the unigroup of the lattice of closed subspaces of an infinite-dimensional Hilbert space is divisible. The main technique is a combinatorial construction of a set of vectors in R2n generalizing properties of those us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008